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Dielectric Constant of Polarizable, 
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We study the dielectric constant of a polarizable, nonpolar fluid or suspension 
of spherical particles by use of a renormalized cluster expansion. The particles 
may have induced multipole moments of any order. We show that the Clausius- 
Mossotti formula results from a virtual overlap contribution. The corrections to 
the Clausius-Mossotti formula are expressed with the aid of a cluster expansion. 
The integrands of the cluster integrals are expressed in terms of two-body nodal 
connectors which incorporate all reflections between a pair of particles. We 
study the two- and three-body cluster integrals in some detail and show how 
these are related to the dielectric virial expansion and to the first term of the 
Kirkwood-Yvon expansion. 

KEY WORDS:  Dielectric constant; nonpolar liquids; suspensions; renor- 
realized cluster expansion, 

1. I N T R O D U C T I O N  

The theory of nonpolar dielectrics has a long and distinguished history, but 
has not yet settled to a final state. Although major advances have been 
made, there is no agreement on the best way of calculating the dielectric 
constant of a dense system of polarizable, nonpolar particles. Several 
review articles in which various approaches are discussed have appeared 
recently.~l~4) 

Most of the attention has focused on a simplified model in which 
spherical particles possess only a polarizable point dipole moment at their 
center. We.assume for generality that the point dipoles are immersed in a 
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uniform background of dielectric constant e~. The effective dielectric 
constant e* of this polarizable point dipole model may be written in 
the form 

e* - e~  4 ~  

= ~3T nc~[ 1 + S] (1.1) g* + 2el 

where n is the number density and ~ the dipole polarizability. For S =  0 
this is the Clausius-Mossotti formula, which may be derived by the 
Lorentz local field argument. ~5~ The term S describes the deviation from the 
Clausius-Mossotti formula arising from corrections to the Lorentz local 
field due to the microscopic structure of the system. Long ago Kirkwood ~6) 
and Yvon ~7) derived an expansion for S in powers of the polarizability ~. 
For real liquids the dimensionless parameter nc~ is sufficiently small that 
only the term $2 of order cz 2 is significant, tS) Kirkwood and Yvon expressed 
$2 as an integral over two- and three-particle correlation functions. The 
comparison with experiment is not very good due to quantum mechanial 
effects which affect the pair polarizability. ~9,1~ Alternatively, one may 
expand S in powers of the density. This leads to the dielectric virial expan- 
sion for a nonpolar gas. ~11~ 

A new approach to the polarizable point dipole model was developed 
by Wertheim, ~12) who performed a graph-theoretic analysis of the dipole 
moments induced by an applied field and detected an Ornstein-Zernike 
type structure. The theory leads to integral equations similar to those 
studied in the theory of liquids. Wertheim proposed an approximation 
analogous to the mean spherical approximation. The theory was further 
developed by Hcye and Stell. t13) Logan ~4) extended Wertheim's approach 
to fluids of molecules with polarizable point dipoles and quadrupoles. 

As a more general model, one may study a suspension of spherical 
inclusions with a radially symmetric dielectric profile. Such inclusions 
possess polarizable multipole moments of all orders. For this model 
Felderhof et aL ~5) developed a cluster expansion in which the effective 
dielectric constant e* is expressed as a sum of absolutely convergent 
integrals. This is in contrast to the Kirkwood-Yvon expansion, in which 
the integrals are not absolutely convergent and must be specified to run 
over a spherical sample. Felderhof e t  a/. O6) also showed which parts of the 
cluster integrals give rise to the Clausius-Mossotti formula. The terms 
correspond to virtual overlap configurations of the inclusions. 

Recently we have extended Wertheim's approach and have derived a 
renormalized cluster expansion for the related problem of wave 
propagation in a disordered system of scatterers. ~7~ Here wje apply the 
renormalized cluster expansion to a dielectric suspension of spherical 
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inclusions. A modification of Wertheim's theory allows us to find a 
relatively simple expression for the electric susceptibility kernel. We show 
that the effective dielectric constant e* may be written in the form (1.1) 
with 

4n , 1-1 I + S =  1--~-7~ ne(z+/~) (1.2) 

where the coefficients 2 and /* are each given by a sum of absolutely 
convergent cluster integrals. We study the low-order integrals in some 
detail. All multipole orders may occur, but of course the theory simplifies 
for the polarizable point dipole model. 

For a special class of dielectric suspensions, in which the dielectric 
profile of the inclusions is uniform and equal to a constant ~2, exact upper 
and lower bounds on the effective dielectric constant e* have been 
derived. (18'~9) The bounds are tight when ~2 differs little from the 
background value el. A generalization to penetrable inclusions and a 
different calculation of the bounds has been proposed by Torquato. (z~ 
It would be of interest to compare the predictions of the renormalized 
cluster expansion, when approximated by the lower order terms, with the 
exact bounds. 

For the polarizable point dipole model Bedeaux and Mazur (2a) have 
derived an expression for S in (1.1) based on the idea that fluctuations of 
the density are small. Felderhof discussed this type of expansion in a 
different formalism. ~22/ The theory has been compared with Wertheim's 
approach by Hcye and Bedeaux (z31 and was extended to include higher 
order multipoles by Geigenmiiller and Mazur. ~24~ Although in principle 
exact, when carried to infinite order, the theory has the disadvantage that 
in any finite order there are contributions from the nonphysical overlap 
region where the propagator between different particles may be chosen 
arbitrarily. This point was first emphasized by Sullivan and Deutch. (25) In 
our view this is an unattractive feature, since it is difficult to motivate the 
choice of propagator in the nonphysical region. In our expansion there also 
occur contributions from a virtual overlap region, but we do not have the 
freedom of modifying the propagator there. 

Here we first develop the theory for dielectric suspensions, closely 
following the work of Felderhof et  al. (~5~ We then apply the renormalized 
cluster expansion and derive (1.2). The low-order cluster integrals are 
discussed in some detail. Finally, we compare with the Kirkwood-Yvon 
expansion and the dielectric virial expansion for the polarizable point 
dipole model. 
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2. E X P R E S S I O N  FOR T H E  W A V E V E C T O R - D E P E N D E N T  
S U S C E P T I B I L I T Y  T E N S O R  

We consider a dielectric system consisting of N nonoverlapping 
spherical inclusions embedded in a uniform background of dielectric 
constant el. The inclusions are identical, each of radius a and characterized 
by a spherically symmetric dielectric constant. For a fixed configuration of 
inclusions in which they are centered at RI,R2,...,RN, the dielectric 
constant at a field point r is then (j  = 1,..., N) 

e(1 ..... N; r)= ~ el' ] r - R j l  > a  (2.1) 
( e ( l r -  Rsl), I r -Rs[  < a  

The basic equations for the electric field E and the dielectric displacement 
D are Maxwell's electrostatic equations 

V . D = 4 ~ p o ,  V x E = 0 ,  D = e E  (2.2) 

where p o = P o ( r )  is a fixed charge distribution, independent of the 
configuration of the inclusions. The applied field E0(r ) is the solution of 
Eqs. (2.2) with e a uniform dielectric constant el. The electric field E(r) in 
the presence of the inclusions is related to the applied field by 

E(1,..., N ) =  K(I ..... N).  E o (2.3) 

where K(1 ..... N) is a linear operator which depends parametrically on the 
positions of the inclusions. We define the induced polarization, relative to 
the medium in the absence of inclusions, via the relation 

D = e l E + 4 ~ P  (2.4) 

The polarization is also related linearly to the applied field 

P(1,.. . ,  N )  = Z(1 ..... N )  K(1  ..... N ) . E  o 

where 

(2.5) 

Z(1,..., N ) =  e, 1,...,~ N ) - e  1 (2.6) 
4g 

N e ( j )  -- e I O(j)  (2.7) 
Z(1 ..... N) = ~ z (J ) ,  z ( J )  4~ 

j=l 

is the relative dielectric susceptibility. It follows from (2.1) and the 
assumption that the inclusions do not overlap that the susceptibility is a 
sum of one-body terms 
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where the step function O(j)= O(a-It-Rj]) localizes the field point r to 
lie within the inclusion j. 

The inclusions are randomly distributed as described by a probability 
distribution W(1,..., N). The distribution is assumed normalized to unity 
and symmetric in the labels 1 ..... N. The partial distribution functions are 
defined by 

N! n(1,...,s)=(U_s)----~.f ...f dRs+l...dRNW(1,...,U) (2.8) 

The average electric field in the presence of the inclusions is 

<E>=f...fdR1...dR N W ( I  ..... N) E(1 ..... N) (2.9) 

and the average polarization ( P >  is defined similarly. From (2.3) and (2.5) 
we find 

< E ) = < K > ' E  o, < P ) = < z K > . E  o (2.10) 

Eliminating the aplied field E 0, we find that the averages are related by 

< P )  = X .  <E> (2.11) 

with the linear susceptibility kernel X(r, r ') given by 

X = ( z K > . ( K )  1 (2.12) 

We cast this in a more familiar form by defining the T operator by 

T(1 ..... N) = Z(1 ..... N) K(1,..., N) (2.13) 

The operator K(1 ..... N) may be written alternatively 

K(1 ..... N) = I + GoT(1 ..... N) (2.14) 

where Go is the Green function for the uniform medium with dielectric 
constant el. The explicit form for Go acting on a given vector field V(r) is 

[Go'VJ(r) 

_ 4~ V(r)+fdr, 3(r-r').V(r')(r-r')-(r-r')2V(r') (2.!5) 
3~ 1 e l l r - - r ' t  5 

where the subscript b on the integral indicates that the integral is carried 
out with the exclusion of an infinitesimally small sphere centered at r. 
Using (2.13) and (2.14), we may write (2.12) in the form 

X = ( T ) < I + Q o T )  1 (2.16) 
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This expression is identical to that obtained for the self-energy operator in 
many-body scattering theory. 

The analogue of (2.7) in many-body scattering theory is the statement 
that the scattering potential is a sum of one-body potentials. This 
circumstance together with the expression (2.16) is at the basis of the 
renormalized cluster expansion which we have developed recently. (17) 
Therefore we can immediately apply this expansion in the present case. The 
susceptibility kernel is given by 

X=fdln(1)B(1)+fdld2n(1)n(2)B(1)F(1,2)B(2) (2.17) 

where the integrations are over the positions R1 and R2 of two spheres, 
n(1) is the number density of spheres, B(1) is the so-called bridge operator, 
and F(1, 2) is the pair connector. In the next two sections we shall give the 
cluster expansion expressions for these operators. 

We assume that the system has a proper thermodynamic limit N o o% 
volume ~2 o oe, at constant n=N/f2, in which it becomes spatially 
homogeneous. In the thermodynamic limit the density n(1) becomes a con- 
stant n, the operator B(1) depends only on the variables r -  R1 and r ' - R 1 ,  
and the operator F(1, 2) depends only on r - R 1 ,  r ' - l t 2 ,  and R I - R  2. 
Hence in this limit the susceptibility operator X(r, r') becomes trans- 
lationally invariant and depends only on r - r ' .  Its plane wave matrix 
elements defined by 

(qIXlq')--- f dr dr'exp(-iq.r)X(r,r')exp(iq'.r') (2.18) 

acquire delta-function behavior and take the form 

(q I~]q ' )= 8~s x*(q) 6(q - q ' )  (2.19) 

where x*(q) is the effective susceptibility tensor which relates the Fourier 
components of the average fields 

(Eq) : ~  3 f exp(--iq" r) (E(r)) dr 

~Pq) : ~3 f exp(--iq" r) ~P(r)) dr 
(2.20) 

according to 

( p q )  =x*(q) .  (Eq)  (2.21) 
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The effective dielectric tensor is given by 

e*(q) =e~l + 47rx*(q) (2.22) 

It follows from (2.17) and (2.19) that the susceptibility tensor may be 
expressed as 

x*(q)=n(qlB(1)Bq)+nZfdR(qlB(1)F(1,2)B(2)Lq) (2.23) 

where the center of sphere 1 may be taken to be at the origin and where 
R = R 2 - R I  is the position of sphere 2 relative to sphere 1. In the following 
we shall be particularly interested in the q ~ 0 limit. 

3. B R I D G E  O P E R A T O R  

In this section we study first the bridge operator B(1) occurring in the 
expression (2.23) for the susceptibility tensor. We recall that the bridge 
operator B(1) is defined by O7) 

B(1)= M(1)[I-- S(1) M(1)]-I (3.1) 

where M(1)-=T(1) is the T operator for a single particle centered at R1, 
and S(1) is the so-called reaction field operator. 

We note that the operator M(1) is localized about R1 in the following 
sense. The operator acts as an integral kernel on a vector field E(r) such 
that 

[M(1)E]j(r)  = f dr' Mjk(1; r, r') �9 Ek(r' ) (3.2) 

The localized property of M(1) is that 

M j ~ ( 1 ; r , r ' ) = 0  if I r - R l l > a  or I r ' - R l h > a  (3.3) 

It may be shown from the basic equations that the kernel is symmetric 

Mjk(1; r, r') = Mkj(1; r', r) (3.4) 

The localization property (3.3) follows from (2.7), (2.13), and the symmetry 
(3.4). 

The reaction field operator S(1) is given by a cluster expansion 

S(1)= ~ Ss(1) (3.5) 
s = 2  
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where Ss(1) is defined as an average scattering operator for s particles. 
Explicitly, the s-particle operator is given by 

S~(1) = ~ f d2...  ds n(2).--n(s) k(C) Nll(C ) 
C 

(3.6) 

where the sum is over all connected ordered partitions of s labels, k(C) is a 
corresponding chain correlation function, and NH(C) is a corresponding 
nodal connector. The precise definitions of these quantities have been given 
in ref. 17. By way of example, we write the lowest order terms in more 
explicit form. Thus, the two-particle term in (3.5) is given by 

$2(1)-~ f d2 n(2) k(1, 2) N~(1,  2) (3.7) 

where k(1, 2)- -g(1,  2) is simply the normalized two-particle distribution 
function defined by n(1, 2 ) = n ( 1 ) n ( 2 ) g ( 1 , 2 ) .  The three-particle term is 
given by 

S 3 ( 1 ) = f  d2 d3 n(2) n(3)[k(1, 2, 3) NH(1, 2, 3) 

-I-k(1, 2 I 1, 3 ) N i l ( 1  , 2 I 1, 3)]  

with the chain correlation functions 

(3.8) 

k(1, 2, 3 ) =  g(1, 2, 3), k(1,211, 3) = g(1, 2, 3 ) -  g(1, 2) g(1, 3) (3.9) 

where g(1, 2, 3) is defined by n(1, 2, 3)=n(1)n(2)n(3)g(1, 2, 3). The nodal 
connectors NI~(C) will be discussed more fully at a later stage. We merely 
note that they correspond to scattering sequences in which the first and the 
last scatterer have the label 1. It follows from the symmetry (3.4), the sym- 
metry of the Green function (2.15), and the definition of the nodal connec- 
tors that they are symmetric kernels. As a consequence, the reaction field 
operator also possesses the symmetry property (3.4). Hence, the bridge 
operator B(1) given by (3.1) has the same symmetry. 

In the calculation of the effective dielectric constant corresponding to 
the q ~ 0 limit in (2.23) we must consider the matrix element (0 IB(1)]0), 
where we employ the notation (2.18). We note that the corresponding 
matrix element of M(1) is given by 

(0 IM(1 )l O) = c~1 (3.10) 

where c~ is the polarizability of a sphere, since (0[M(1)[0) .  Eo is just the 
total dipole moment of sphere 1 by itself in a uniform applied field E o. 
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Next we consider S(1)M(1)I0)  as a function of the field variable r. It 
follows from the equations of electrostatics and the assumed isotropy of the 
system that this has the remarkable property 

ere Es(1) M(1)lO)](r)=~,~l for I r - R l l  ~<a (3.11) 

where ,~ is a dimensionless coefficient. To show this property, we note that 
in a uniform applied field E0 

[S(1) M(1) ] 0). Eo](r) = f Go(r -  r') �9 F(r'). Eo dr' (3.12) 

where G o ( r - r ' )  is the kernel of the Green function G o defined in (2.15) 
and F ( r ' ) ' E  o is a polarization field surrounding sphere 1, which vanishes 
identically for I t ' -R1]  ~<a. Hence the right-hand side of (3.12) satisfies 
Laplace's equation and by symmetry it represents a field which is uniform 
for hr -Rl l~<a ,  parallel to Eo, and which we may put equal to 
E = ( 4 7 z 2 n c ( 3 e 1 ) E  o. 

By repeated application of (3.11) in the expanded form of (3.1), we 
find that the matrix element (0 IB(1)I 0) is given by 

o( 
(0]B(1)]0)-  1- -47z2nc t /3e~  1 (3.13) 

It is natural to use this expression to define a dressed polarizability ~' by 

~' = :t [ 1 - ( 47r?4nc~/3el ) ] - 1 (3.14) 

We may calculate the reaction field constant 2 from (3.11) by approximating 
the reaction field operator S(1) by the first few terms (3.7) and (3.8) of its 
cluster expansion. Before turning to that task, we first study the second 
term in (2.23). 

4. PAIR C O N N E C T O R  

In this section we study the second matrix element in (2.23), again in 
the limit q--*0. The pair connector F(1, 2) is related by an integral 
equation of Ornstein-Zernike type 

F ( 1 , 2 ) = S ( 1 , 2 ) + f d 3 n ( 3 ) S ( 1 , 3 ) B ( 3 ) F ( 3 , 2 )  (4.1) 
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to the so-called short-range connector S(1, 2). The latter has a cluster 
expansion of the form 

S(1, 2 )=  L S~(1, 2) (4.2) 
s = 2  

where S s(1, 2) is an average scattering operator involving s particles. For 
s = 2 the operator is given by 

$2(1,2)= g(1, 2)[N12(1 , 2 ) - 9 0 3  +h(1, 2)G o (4.3) 

where h(1, 2)=g(1,  2 ) -  1. For s>~3 the operators are expressed con- 
veniently with the aid of an auxiliary label d in the form 

S tl, d)-- Z J d2... 
C l = 2  

x 6(R d -  Rl)[n(2)-.-n(s)/n(l)] k(C)  NI , (C  ) (4.4) 

Here we have taken note of the fact that 2 in (2.23) plays the role of a 
generic label different from 1. By a renaming of labels we may obtain an 
expression for Ss(1, 2). For example, for s = 3 

$3(1 , 2) = f d3 n(3)[k(1, 2, 3) N,2(1, 2, 3) 

+k(1,212,  3)N12(1,212, 3) 

+k(1,2,3)N12(1,  3 ,2 )+k(1 ,  3[1,2)N12(1,311,2) 

+ k(1,312, 3) N12(1,313, 2)] (4.5) 

The chain correlation functions k are defined in analogy to (3.9). The nodal 
connectors N12 have been defined in detail in ref. 17. At a later stage we 
shall be concerned with the explicit expressions. 

We must study the matrix element (0tB(1)F(1, 2)B(2)I0). We iterate 
the integral equation (4.1) and consider first the ket S(k, 2)B(2)10) as a 
function of the field variable r. It is convenient to write the short-range 
connector as a sum of two contributions 

S(1, 2 )=  Soy(l, 2 )+  S,o(1, 2) (4.6) 

where Sov(1, 2) is defined by the virtual overlap contribution to the last 
term in (4.3), 

S ov(1, 2) = -O(2a  - IR1 - R21 )Go (4.7) 
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This is the only term in S(1, 2) in which the Green function acts between 
overlapping inclusions, as may be seen from the multiple scattering expan- 
sion of the nodal connectors and the expression of the chain correlation 
functions k in terms of normalized distribution functions g. Although the 
inclusions cannot overlap physically, nonetheless the overlap contribution 
(4.7) appears as a consequence of the fact that the susceptibility kernel is a 
ratio of two averages, as may be seen from (2.12). In earlier work (16) it has 
been shown that the virtual overlap configurations make an important 
contribution and are responsible for the Clausius-Mossotti approximation 
to the effective dielectric constant. 

Therefore we first consider the ket S ov(k, 2)B(2)k0). Eo as a function 
of the field variable r, or equivalently -GoB(2) I0 ) .  E0 with the condition 
that the inclusions k and 2 must overlap. The latter ket is related to 

Eind(2) = GoM(2)I 0)- E0 = K(2) �9 Eo - E0 (4.8) 

which is the induced field, within and without the inclusion 2, when placed 
in the uniform field Eo. It follows from (3.1) and (3.11) that the 
ket GoB(2)]0)" E0 is given by 

GoB(2) I 0)" Eo = Eind(2) = ( 1  - -  4~2nc~/3~1 )--1 E i ~ a ( 2  ) (4.9) 

It was shown in ref. 16 that within the inclusion centered at Rk the induced 
field corresponding to an inclusion centered at R2 when integrated over all 
overlapping configurations is just the uniform field 

f dR2Eina(2;r)= -4~z---~Eo for [r--Rkl < a  (4.10) 
IRk R21 < 2a 3 ~ 1  

Combining this with (4.9), we therefore find 

4~a' 
dR2 [GoB(2)10) 'Eo] ( r ) -  Eo for I r -Rk[  < a  

Rk-R21 < 2 a  ~ ~ 3~;1 
(4.11) 

where the dressed polarizability a' is given by (3.14). If the bridge operator 
B(2) is approximated by the bare operator M(2), then ~ ' - -z  in (4.11). We 
show in the next section that if in addition S(1, 2) is approximated by 
Soy(l, 2), then (4.11) leads to the Clausius-Mossotti formula. 

Next we consider the ket Sno(k, 2) B(2)10)" Eo as a function of the 
field variable r. In analogy to (3.12), the integral of this ket over the non- 
overlap positions of sphere 2 is given by 

f dR2[Sno(k,Z) B(Z)lO).Eo](r)=f Go(r-r').F'(r').Eodr" (4.12) 

822/'53/'1-2-33 
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where F'(r'). E o is a polarization field surrounding sphere k which vanishes 
identically for I t ' -Rk[ ~< a. Hence, the right-hand side of (4.11) satisfies 
Laplace's equation and by symmetry it represents a field which is uniform 
for [r ' -R~I ~< a and which we may put equal to 

f 4re dR 2 [ S no(k, 2) B(2)I 0)" Eo](r) = ~ #a' Eo for Ir-R~J < a  (4.13) 

with a dimensionless coefficient #. Adding (4.11) and (4.13) and making 
use of (4.6) and (4.7), we therefore find 

dR2 ES(k, 2) B(2)I 0) �9 Eo](r) = ~ (1 +/~)~'Eo for I r - -Rkl<a  

(4.14) 

We may now repeat the above argument in the iterated form of (4.1). 
For each pair of factors S ( j -  1, j) B(j) we obtain upon integration over Rj 
a uniform field acting on the next inclusion. Hence we find 

f dR2 EF(1, 2) B(2)10)](r) 

4x (1 +#)~ '  ~1 _ 4 ~  
L (1 

- -1  

+#)nc~' 1, for I r - R ~ l < a  (4.15) 

Finally, this yields, with use of (3.13) and (3.14), 

n = f dR (01B(1) F(1, 2) B(2)I 0) 

41~(1+/0(n ,)2[1 4r c j 1 
= 3e---~ - ~-~el (1 + #) nc( 1 (4.16) 

Together with (3.13), this yields a simple expression for the effective dielec- 
tric constant, which we shall discuss in the next section. 

To conclude this section, we note that the definition (4.13) may be 
simplified by replacing the operator B(2) by the single-particle operator 
M(2), namely 

dR2 ES.o(1, 2)M(2)10)3(r) U=l for [ r - R l l < a  (4.17) 

since in both (4.13) and (4.17) a uniform applied field Eo first induces a 
dipole moment in inclusion 2. 
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5. EXACT EXPRESSION FOR THE EFFECTIVE 
DIELECTRIC C O N S T A N T  

We may use the results obtained in the last sections to derive an exact 
expression for the effective dielectric constant in terms of the density n, the 
dipole polarizability ~, and the coefficients 2 and kt defined by (3.11) and 
(4.17). In the q--*0 limit the effective dielectric tensor defined by (2.22) 
becomes a scalar 

e* (0 )  = e* l  (5.1) 

From (2.23), (3.13), and (4.16) we find the exact expression 

e* = e l +  4~zn~' I - ~-~1 (1 

By use of (3.14) this may also be written 

or equivalently 

+ #) ne,1-1 (5.2) 

4re 1 -l 5" = e l +  4rmc~ 1 --~el (1 +),  +,u) nc~ (5.3) 

e* = el + 4zone(' (5.4) 

with the doubly dressed polarizability 

[ 4re ] 1 
c~" = :x 1 - ~ 1 ( 1  + 2 + u )  n~ (5.5) 

Alternatively, we may cast (5.3) in the Clausius-Mossotti  form 

5" - ~i 4~ 
n~* (5.6) 

e* +251 35~ 

with the effective polarizability 

I 4re 1 -i 
~ * = c ~  1 - 5-~- (,i + ~ )  n~ (5.7)  

In many cases ~* will be close to ~ and then the usual Clausius Mossotti 
formula provides a good approximation to the effective dielectric constant. 
Inverting (5.6), we obtain 

5" + 251 35~ 
- - - - -  ~.-~, (5.8) 
c *  - -  51 4 ~ n ~  

which is related to Wertheim's ~12~ Eq. (26). 
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The above equations are exact. The remaining task is to evaluate the 
coefficients 2 and ~t, which can be achieved only in approximation. The 
Clausius-Mossotti form (5.6) together with (5.7) provides a convenient 
starting point for comparison with results obtained in the literature. 

6. COEFFICIENTS h A N D  p 

In this section we consider the approximate calculation of the coef- 
ficients 2 and/~ defined by (3.11) and (4.17). For both coefficients we may 
write a cluster expansion 

2 =  ~ 2 s, # =  ~ /~, (6.1) 
s=2 s--2 

corresponding to (3.5) and (4.2). We choose the origin in the center of 
inclusion 1 and for each of the connected partitions occurring in (3.6) and 
(4.4) we define two tensors by the equations 

3~ 1 
F,I(C ) = ~  [N, , (C)  M(I)IO)](O) 

391 
F12(C') = ~--~ [-N12(C')M(2)I0)-](0 ) 

(6.2) 

where C' corresponds to C by a reordering of labels as in (4.5). It then 
follows from (3.7) and (3.11) that the two-particle coefficient 22 is given 
explicitly by 

221 = f  dR2 g(1, 2) Fl1(1, 2) (6.3) 

Similarly, we find from (3.8) and (3.11) for the three-particle coefficient 

23 =23(1, 2, 3)+23(1, 211, 3) (6.4) 

with the two contributions 

)~3(1, 2, 3)1 = n  f dR2 dR 3 k(1, 2, 3) Fn(1 , 2, 3) 
(6.5) 

f dR 2 dR 3 k(1, 211, 3) FlI(1, 211, 3) 23(1, 21 1, 3)1 ~ n 

We find from (4.3), (4.6), (4.7), and (4.17) for the two-particle coef- 
ficient I~2 

/~21 = [ dR2 g(1, 2) F,2(1, 2) Go(R2) (6.6) 
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Here we have used the explicit form of the Green function defined by (2.15) 
to show that the last term in (4.3) does not contribute in the nonoverlap 
region due to angular integration. From (4.5), (4.17), and (6.2) we obtain a 
sum of five contributions for the coefficient #3 

//3 = ~3(1, 2, 3)+#3(I,  212, 3)+//3(1, 3, 2) 

+ ~3(1, 311 , 2 )+  //3(1, 313, 2) (6.7) 

where explicitly 

//3(1, 2, 3)1 = n f d R  2 d R  3 k(1, 2, 3) F12(1, 2, 3) 

=n f dR2dR3 k(1, 212, 3) Fl2(1,212, 3) #3( 1, 2[2, 3)1 

#3(1, 3,2)'1 = n f  dR2dR3k(1,2, 3) F12(1, 3, 2) (6.8) 

/~3(1, 3L1, 2)1 =n  f dR2 dR3 k(1, 311, 2) F12(1, 311,2) 

f dR2 dR3 k(1,312, 3) 1:12(1, 3]3, 2) //3( 1 , 313, 2)1 ~ n  

The two coefficients #3 (1,2,3) and //3(1,3, 2) differ not just by an 
interchange of labels, since an ordering is implied in the definition of the 
nodal connectors N12(C) which enter the definition (6.2) of the tensors F12. 

We presume that the low-order contributions 22 + )~ and #2 +//3 yield 
a good approximation to the coefficients 2 and//. In the following we first 
give a more detailed description of the nodal connectors entering the 
calculation. Then we show on the example of the point dipole model how 
the coefficients 2>..., #3 may be calculated. 

7. N O D A L  C O N N E C T O R S  

In this section we describe the nodal connectors entering the 
calculation of the low-order coefficients 22 ..... #3- Consider first the nodal 
connector Nl1(I, 2). It is associated with the sum of scattering sequences 
[121]+ [12121]+ ..., describing repeated scatterings between the two 
inclusions 1, 2, with the condition that the first and last scatterer be 1. 
Explicitly the connector is 

NH(1, 2) = 0(1) GoM(2 ) Go0(1) 

+ 0(i) GoM(2) GoM(1) GoM(2) Go0(1) + --. 

= 0(1) 9oM(2)[~ - QoM(1) aoM(2)3 - '  9o0(i)  (7.1) 
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where the 0 operator is defined by 

0 ( 1 ;  r, r ' )  = O ( a  - Ir - R I I )  6 ( r  - r ' )  ( 7 . 2 )  

It localizes the field points r and r' to the volume of inclusion 1. 
Similarly, the connector N~2(1, 2) corresponds to the sum of scattering 

sequences [12] + [1212] + ..., and is given explicitly by 

N12(1, 2 )=  0(1) Go0(2)+ 0(1) GoM(2) GoM(1 ) Go0(2 ) + .-- 

= 0(1) G0[ I  - M(2) GoM(1)Go] -1 0(2) (7.3) 

Next we consider the three-body connectors. Some of these have a 
slash indicating a nodal point. Such connectors can be decomposed into a 
product of two-body connectors separated by a one-body scattering 
operator, namely 

N11(1, 21 1, 3)= Nl1(1 , 2) M(1)NI~(1, 3) 

N~2(1,212, 3)= N~2(1, 2)M(2)N22(2, 3) 
(7.4) 

N12(1 , 311, 2 )=  N,~(1, 3)M(1)N12(1, 2) 

N~2(1,312, 3)= N~3(1, 3)M(3)N32(2, 3) 

We introduce a short-hand notation which will be helpful in the study of 
the remaining three-body connectors. We indicate the pairs (1, 2), (2, 3), 
and (3, 1) by the letters A, B, and C, respectively. Then the right-hand side 
of (7.4) is fully specified by the following abbreviated notation: 

Nl1(1,211, 3) = [AC]~I, 

Nt2(1, 311,2)= [CA]I 2, 

N12(1,212, 3)= [AB]~2 

N12(1, 3t2, 3)= [CB]~2 
(7.5) 

In each case the two letters specify both the two nodal connectors and the 
intermediate one-body scattering operator. The subscripts specify the first 
and last subscript of each product. 

The nodal connectors Nl1(1, 2, 3), N12(1, 2, 3), and N12(1, 3, 2) corres- 
pond to scattering sequences without nodal points. In particular, the 
connector Nll (1, 2, 3) corresponds to the sum of scattering sequences 
[-1231] + [12321]+ ..., the conditions being that, reading from left to 
right, the first and last scatterer be 1, that the scattering sequence contain 
no nodal point, and that the labels 1, 2, 3 must first appear in this order. 
Similarly, the connector N12(1, 2, 3) corresponds to the sum of scattering 
sequences [12312] + [121312] + ..., with the same conditions as before, 
except that now the first scatterer must be 1 and the last scatterer be 2. 
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Finally, the connector N12(1 , 3, 2) corresponds to the sum of scattering 
sequences [13212] + [131232] + ..-, with the same conditions as before, 
except that the first scatterer must be 1, the last scatterer must be 2, and 
the labels 1, 3, 2 must first appear in this order. 

The nodal connectors Nl1(1, 2, 3), N12(1, 2, 3), and N12(1, 3, 2) may 
be evaluated explicitly by expressing them in terms of two-body connectors. 
This corresponds to a resummation of scattering sequences similar to the 
binary collision expansion familiar from the kinetic theory of gases. (26'27) 
Employing the abbreviated notation introduced in (7.5), we may write the 
connector Nl1(1, 2, 3) in the form 

Nl1(1, 2, 3) = [ABA + ABC + ACA + A B A C  + ABCA 

+ A C A C  + ACBA + ACBC + . . . ]  H (7.6) 

The complete sum may be characterized as the sum of all words formed 
from the letters A, B, C with the conditions that each word contain at least 
three letters, that no two successive letters are the same, that the first letter 
be A, and the last one be A or C. Similarly, the connector N12(1, 2, 3) is 
given by 

N12 (1, 2, 3) = [ ABA + ACA + A CB + A B A B  + ABCA 

+ ABCB + A C A B  + ACBA + . . . ]  12 (7.7) 

The complete sum may be characterized as the sum of all words formed 
from the letter A, B, C with the conditions that each word contain at least 
three letters, that no two successive letters are the same, that the first letter 
be A, and the last one be A or B. Similarly the connector N12(1 , 3, 2) is 
given by 

N12(1, 3, 2) = [ C A B +  CBA + CABA + CACA + CACB 

+ CBAB + CBCA + CBCB + . . . ]  12 (7.8) 

The complete sum may be characterized as the sum of all words formed 
from the letters A, B, C with the conditions that each word contain at least 
three letters, that no two successive letters are the same, that the first letter 
be C, and the last one be A or B. 

We may find more concise expressions for the connectors in (7.6) (7.8) 
by use of a matrix formalism. We arrange the two-body nodal connectors 
and the one-body scattering operators in 6 x 6 matrices. We consider first 
the matrix operator 

0 0 ) 
O o   (3,1t (7.9) 
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where the first diagonal element is a short-hand notation for the 2 x2  
matrix 

(N~(1 ,  2) N12(1 , 2))  (7.10) 
N(1, 2 ) =  ~ 2 1 ( 1  ' 2) N22(1 , 2) 

and the other two are found by cyclic permutation of the labels (1, 2, 3). 
Further, we define the matrix 

o M (2) 
~ =  M+(2)  0 

M (1) M+(3)  

with the 2 x 2 matrices 

N+(1)\  
(7.11) 

(I M + ( i ) =  t 

Now one has, for example, 

N(1, 2) M (2) N(2, 3) 

= (N~2(1, 2) M(2) N22(2, 3) 
~, N22(1 , 2) M(2) N22(2, 3) 

M (;,_( 0 I) 
M (i) (7.12) 

N~2(1, 2) M(2) N23(2, 3)'~ (7.13) 
~22(1, 2) M(2) N23(2 , 3)J 

Each of the matrices X ,  ~ has 36 elements which may be labeled as 
[Pcr, P'a'], where P and P'  denote one of the three pairs (1, 2), (2, 3), and 
(3, 1), and the indices r~ and rr' take the values _+. 

The matrix 

= J ~ J ( X J / S  [ I - J / ~ ]  -1 (7.14) 

comprises the sum of all binary collision sequences starting and ending 
with one of the 12 two-body nodal connectors N~t(i, j), consisting of an 
alternation of one-body scattering operators and two-body nodal connec- 
tors, with the conditions that no two successive connectors are the same 
and that the sequence contain at least two one-body scattering operators. 

The nodal connector N~I(1, 2, 3) may now be characterized as the sum 
of matrix elements, 

N 1 ~ ( 1 , 2 , 3 ) = ~ e [ - ( 1 , 2 ) + ; ( 1 , 2 ) + ] + . ~ e [ ( 1 , 2 ) + ; ( 3 , 1 ) - ]  (7.15) 

Similarly, 'the nodal connector N12(1, 2, 3) is given by 

Na2(1, 2, 3) = 5e[(1, 2) + ; (1, 2) - ] + ~e[(1, 2) + ; (2, 3) + ] (7.16) 
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The nodal connector N13(1, 2, 3) is given by 

N 1 3 ( 1 , 2 , 3 ) = ~ [ ( 1 , 2 ) + ; ( 3 , 1 ) + ] + ~ [ ( 1 , 2 ) + ; ( 2 , 3 ) - ]  (7.17) 

One obtains the nodal connector N~2(1, 3, 2) by interchanging the labels 2 
and 3 in (7.17). 

Clearly the above procedure may be extended to nodal connectors 
containing more than three labels. All the higher order nodal connectors 
may be expressed in terms of two-body connectors by use of the binary 
collision expansion. 

8. POLARIZABLE POINT DIPOLE MODEL 

The simplest model to be studied is a system of spherical particles with 
a polarizable point dipole at the center. Although strictly speaking this 
does not fit into the scheme developed in Section 2, the subsequent 
developments are valid nonetheless with the simple one-body T operator 

M(1)=  M(1;r, r ' )=  :d6(r-Rt)6(r'-Rl) (8.t) 

The two-body nodal connectors given by (7.1) and (7.3) may be found 
explicitly for this model. For the nodal connector NH(1, 2) we find 

NH(1, 2; r, r') = O(a -- Ir -- Rll) Go( r -  R2) 

e2R6 e2R 6 ] 

x Go(r' - R2) O(a - Ir' - R~t) (8.2) 

where R = R 2 - R  1 . Similarly, we find for the nodal connector Nl2(1, 2) 

2;r, r ' )=  0 ( a - ] r -  RI]) {Go( r - i f )  

2~1 R3 ~ 
+ Go(r - R2)c~ [_~2R6 _ 4cd R R  

0~1 R3 ] } 
e~R--g--_-2(1 -kf i )  Go(r'-Rl) O(a-lr'-R21) (8.3) 

The three-body connectors given by (7.15)-(7.17) may also be found 
explicitly. We present the complete expressions in a separate article. 
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With the aid of the 2-body and 3-body nodal connectors, we may 
evaluate the coefficients 22 ..... #3 as shown in Section 6. In particular we 
find from (6.2) and (8.2) 

391~[ 4 1 ] 
FII(1, 2) = - ~ - -  ~ e ~ R 6 _ 4 ~ R k k + 2 R 6 _ ~ 2 ( 1 - k k  ) (8.4) 

and from (6.2) and (8.3) 

3~, 3~ 2 I- 8 k k  1 ( 1 - k ~ ) ]  
F12(1, 2) = ~-~ G o(R) + ~--R-5 L~ R6 2_ 4e2 a2R6_e2 (8.5) 

Hence we obtain by use of (5.3) and (6.6) 

f2 ~ c~ (8.6) 2 2 + # 2 = 6 e l  , dR R2g(R ) (e lR3-  2o~)(el R3 + ~ ) 

If this expression is expanded in powers of ct, then the lowest order term is 

f2 ~ g(R) 6c~ dR R4 (8.7) 

We shall consider only the corresponding lowest order contribution to the 
3-body terms 2 3, #3. It is easily seen that the only contribution of order a 
comes from the term #3(1, 3]3,2) in (6.8). It yields 

391 f #(31)1 = 4~- nc~ dR 2 dR 3 k(1,312, 3) Go(RI3 ) �9 G0(a32 ) (8.8) 

or equivalently 

#~" = 2-~3 na I dR2 dR3 I-g(1, 2, 3) - g(1, 3) g(2, 3)] P2(COSR)3R330) (8.9) 

where 0 is the angle between R13 and R23 and P2 is the second Legendre 
polynomial. 

Conventionally, one writes the renormalized polarizability defined by 
(5.6) in the form 

~* = ~[1 + S(n, ~)] (8.10) 

where S(n, ~) gives the deviations from the Clausius-Mossotti formula. An 
expansion of S(n, c~) in powers of ~ starts with ~2 and one denotes this first 
term by $2: 

S(n, c~) = $2 + O(ct 3) (8.11) 
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Expanding the denominator in (5.7) in powers of O{, we find 

47g 
= 3 ) no{ $2 ~-Te (2(2' ~ +/~(2~) -t- U <~1' (8.12) 

Substituting from (8.7) and (8.9), we recover the result of Kirkwood (6) 
and Yvon, (7) It was pointed out by Nijboer (28) that the two-particle 
contributions to the function S(n, O{), as given by its Kirkwood-Yvon 
expansion in powers of O{, may be summed exactly and expressed in terms 
of the radial distribution function g(R).  The sum is given by 

4~ 
S(2)( n, O{) = 7 -  (Z2 +/22)/70{ 

f2 ~ R2 =8~zno{2 a dR g(R)  (81R3-20{)(81R3 +O{) (8.13) 

in agreement with (5.7) and (8.6). 
Alternatively, one may expand S(n, O{)) in powers of the density. This 

yields the so-called dielectric virial expansion (u,29,3~ 

S(n, O{) = Bn + Cn 2 + . . .  (8.14 

It is clear that only two-particle terms can contribute to the second viriai 
coefficient B. From (8.6) we find 

(.~ R 2 
B=8~o{2j2 ~ d R e  ~ m  (8.15) 

(el R 3 - 20{)(q R 3 q- O{) 

where ~b(R) is the pair interaction potential. The above result was found by 
Buckingham and Pople. (u) It was derived by Isihara (31'32) from the virial 
expansion of the pressure. Isihara's derivation contained an error which 
was corrected by Bose et al. (33~ 

In this section we have discussed the relation of our theory to the 
expansion of Kirkwood Yvon and the dielectric virial expansion for the 
polarizable point dipole model. We wish to emphasize that not only is our 
theory more general in that it includes all higher multipoles, there is an 
important difference with the Kirkwood-Yvon theory even for the 
polarizable point dipole model. The higher order correction terms in the 
KY theorY are expressed as integrals with long-range integrands which are 
to be calculated for a volume of spherical shape. In contrast, our cluster 
integrals have short-range integrands and are absolutely convergent. The 
reason for this difference was explained in some detail in ref. 15 for the 
unrenormalized cluster expansion. 
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9. CONCLUSION 

We have derived an exact expression for the correction S to the 
Clausius-Mossotti formula, as defined in (1.1). The expression is given by 
(1.2), where the coefficients ,~ and p are defined by (3.11) and (4.17). Each 
of these coefficients has a cluster expansion of the form (6.1), where the 
coefficients 2s and kt s may in principle be found by averaging the result of 
an s-body problem over an s-body correlation function. In practice, we 
cannot expect to go much beyond s=2 ,  3. But it is clear that even a 
calculation of 22,.,/13 goes far beyond the results (8.12)-(8.14). This is of 
no importance for real liquids, since for real liquids the product n~ is 
sufficiently small that the Kirkwood-Yvon expression (8.12) should be a 
good approximation. Experimental deviations from this result are due 
to additional quantum mechanial effects, (9'1~ However, in computer 
simulations we may study the idealized system of polarizable point dipoles 
with values of the parameter n~ of order unity. It would be of interest to 
perform such simulations and obtain values of the function S(n, ~). These 
could then be compared with theoretical values, as given by (1.2) with 2 
and # replaced by the first few terms of their cluster expansion. In future 
work we hope to study the two- and three-body coefficients "~2,..., #3 in 
more detail. In addition, we may calculate selected contributions to the 
higher order cluster integrals, for example, the ring diagrams. These are 
known to be important for the rate constant of diffusion-controlled 
reactions. (34) 

In our opinion, for a reliable prediction of the dielectric constant at 
high density one cannot avoid dealing with at least the two- and three- 
body cluster integrals. It has been suggested for the density fluctuation 
expansion of Bedeaux and Mazur (21) that already a two-body integral 
might yield good results. (24) However, in this rearranged expansion the 
two-body integral includes the nonphysical overlap region, where the 
integrand may be chosen at will. The contribution from the nonphysical 
region cancels again in higher order of the expansion. The mechanism is 
explained in some detail by Geigenm/iller and Mazur (24) for the Kirkwood- 
Yvon term $2. It is suggested that the nonphysical contributions may be 
chosen such as to improve the convergence of the expansion. However, any 
particular choice cannot be justified without a detailed investigation of the 
higher order terms. It seems simpler not to introduce the nonphysical 
contributions at all and study the cluster integrals directly. 
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